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In the periodic mode of operation, it may be assumed that
L na< (g -1)a
— L —— — a.
dt a 0 By

Therefore, one can write from (13)

Aa=Z[cosp + xcos(Awt +9)] (14)

where
E

24,(Bo 1)

Using (14) and substituting (1 + Aa) for ‘a’ one can approximate
(6) as

Z=

dq>
dt

where

rZ?
Q+—(1+x) Kmy[sing + xsin(Awt + )] (15)

2

4 2
m1=1+7(1+x )

It is assumed that the steady-state solution of (15) is
@ =g, + msin( Awt + a)

(16)
where ¢, is the static (i.e., dc) phase error, m is the phase
modulation index, and a« is a constant. Considering x <1, one
can arrive at the following relations:

mAw
Q 22 . _ — hm)
E+§(1+x ) =my| Jy(m)sing, + e (17)

and

mAw\? 5
(2] +@aOm mcos ) = Gemai(m)'s (19
The value of ¢, for the synchronization boundary can be taken

as +(m/2— m). Therefore, relations (17) and (18) are trans-
formed to

and

Putting

0 -9
Ao=0,-Q  Zg=——m
K
and using the value of m? from (20), one can write (19) as
Q rZ? 5 ,  mix?
?+m1+§(1+x)=2'0 4m12[20+m1] zy + 5
2.2 1/2
1X
(Zg + ) +4mix? (21)

‘This relation is used to calculate the locking bandwidth of the
ISO in the presence of the cochannel signal. Fig. 2(b) depicts the
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variation of the locking bandwidth of a Gunn oscillator with the
strength of the cochannel signal for a given synchronizing power
and for two different types of interference detuning. It is ob-
served that when Q, /K >1, one obtains an increase in the
locking range with the strength of the interference, whereas when
Q,/K is just greater than unity, one obtains a reduction in the
locking range of the oscillator with the strength of the cochannel
signal; ie., simply by changing the detuning of the cochannel
signal, one can change the performance characteristics relating to
the tracking capability of the ISO.

V1. ConcrusioNn

(i) There is an additional shift in the oscillator frequency when
the incoming signal is contaminated with the cochannel signal.
This effect will be greater when both the synchronizing signal
and the cochannel signal are on the same side of the oscillator
frequency.

(i) Simply by varying the frequency of the cochannel signal,
one can increase or decrease the tracking capability of the ISO
with the strength of the cochannel signal.
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Accurate Characterization of Microstrip Resonator
Open End with New Current Expression
in Spectral-Domain Approach

TOMOKI UWANO, MEMBER, 1EEE

Abstract —This paper describes a resonant frequency characterization of
microstrip resonators which is suitable for very accurate computer-aided
design. First, the convergence behavior of the numerical computation
based on the spectral-domain approach is discussed to secure the conver-
gence accuracy. To reduce computation time considerably, which at pres-
ent may amount to several houts, a new current expression in the spectral-
domain approach is proposed. In the process described, the computational
results under a good convergence have excellent agreement with those
measured after estimation of a suitable dielectric constant.
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I. INTRODUCTION

In microstrip design, it is often observed that physical circuit
performance differs from that calculated- theoretically. This is
mainly because of dispersion and discontinuity effects. Many
papers have been published about these effects in terms of both
quasi-TEM and full-wave analyses [1]-[3]. Simple equations which
take dispersion effects into account are available and give very
accurate results in certain cases [1]. Discontinuity effects for open
strip ends derived from the electrostatic solution are given in a
simple equation [2]. Accurate results derived from a rigorous
method, however, are not yet available in a simple expression.
Although most recent studies on microstrip resonators involve
circular, elliptical, or other types [4], [5], a rectangular microstrip
resonator is still the most useful in a practical design.

The accuracy required -in stripline circuit design depends on
the performance required for the MIC subsystem. Designers need
to realize better MIC subsystems by precise circuit design as well
as by using advanced GaAs devices. To achieve such a goal,
computer-aided design (CAD) is commonly used whenever accu-

rate stripline characterizations are indispensable, especially for

stripline filter design. As an example, in a parallel coupled
microstrip line filter, an accuracy of 0.5 percent is required for
the center frequency at 14 GHz. This corresponds to a dimen-
sional accuracy of 20 pm for the length of a line on a 1/40 in.
thick alumina substrate.

It is impossible to design such a filter without proper edge
effect corrections, which are generally obtained from experimen-
tal results in an actual design, even though the experiment is
time-consuming. One of the reasons experimental corrections are
more reliable than numerically computed data is that most pa-
pers do not give information on how well the computed results
converge.

Since the open end characterization is a three-dimensional
problem, it takes a significant amount of computation time to

- obtain rigorously well converged results, even if the problem is

reduced to a two-dimensional one by a conversion or a transfor-
mation. It sometimes takes several hours, for instance, with a
VAX-11 /780 with a floating point accelerator to obtain results
with an error of less than 0.5 percent.

The objective of this paper is to present a quickly converging
calculation for the resonant frequency of a microstrip resonator
in a short computation time. The analysis is based on the
spectral-domain approach (SDA) in which the currents on the
resonator are expanded in a series of basis functions [6]. In this
new approach, currents are expanded in basis functions with
known coefficients, while coefficients are unknown in the con-
ventional (or full) SDA. The results are compared with those of
experiments which are processed in a proper manner.

II. ReviEw OF CONVERGENCE BEHAVIOR IN THE FULL SDA

Fig. 1 shows the structure of the microstrip line resonator to be
analyzed along with the dimensional parameters. The currents on
the strip are expressed in terms of a set of known orthogonal
basis functions with unknown coefficients ¢, d,:

Jz(x,z) = chMJzy(x,zv) (1).
Jx(x,z) = Zxdu'Jx#(x,z). (2)

The basis functions Jz, and Jx, are separable in the x and z
directional variables, so the next equations may be used if a

-b

e

zZ

(b)

Structure of microstrip resonator. (a) Cross-sectional side view.
(b) Top view.

Fig. 1.

magnetic wall is assumed at x =0 and an electric wall at z=0:

(r—1)mx
00§ ——T——
’ w/2 (2s —1) 7z
Tz, =Tz, (x)Jz,(2) = — cos 7 ,
: L
)
r=12---;s5=1,2 (3)
. rax
sin ——
w/2 2s—1)mz
Jx, =Jx,(x) Jx,(z) = L -sin ( )
x \? L
e
w/2
r=:1,2..‘;s=1’2... (4)

where r and s are to be chosen on the basis of the number u.

z.,; being an x-dependent term, already incorporates the singu-
lar behavior of the magnetic fields normal to the edges of the
strip.

First, the convergence with respect to the number # was tested
by computing the propagation constant 8 [7} of a conventional
50 £ microstrip line on a 0.6-mm-thick alumina substrate where
the basis functions were assumed as the expansion forms of Jz,,
and Jx,,. The results showed that the change in 8 when r varied
from 1 to 6 was less than 0.02 percent. Convergences were. also
tested for some other structural parameters and it was concluded
that, for 8 calculations of the stripline commonly used in MIC,
only the first term is necessary to obtain a good convergence.
Thus, the computations in this paper were performed with one
x-dependent term for each current.

Next, the convergence in terms of s was tested by computing
the resonant frequency of the stripline resonator with a certain
length. Fig, 2 shows the results and it is learned that 20 terms
could be used satisfactorily to represent the z dependence of the
currents with a convergence accuracy of less than 0.3 percent in
this case. In the SDA, where the determinant of the matrix is
finally computed to solve the eigenvalue problem, each element
of the matrix is the inner product of the basis functions and the
immittance Green’s function [7]. If the number of expansion
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Fig. 2. Convergence of resonant frequency of microstrip resonator by SDA.

terms (basis functions) for Jz,(z) is N, the same number is
required for Jx,(z) in order to obtain reasonable results, and the
matrix size is then 2N X2N. The computation time, therefore,
becomes considerably longer as the number N increases. For
instance, it takes several hours to obtain one resonant frequency
for N =20 using a VAX-11/780.

III. New CURRENT REPRESENTATION

A new process for reducing the computation time is described
where current functions expressed as a series of basis functions
with known coefficients are used. Initially, a so-called standard
resonator is calculated with the full SDA. Once the resonant
frequency is obtained, the coefficients can be calculated from the
matrix. Next, a resonator differing from the standard one is
calculated, keeping the current coefficients ¢, and d, unchanged
but varying the evaluated values for Green’s functions and the
current expansion functions using new structural parameters. As
far as the new parameters approximate those of the standard
resonator, the results are expected to be accurate because of the
variational nature of the Galerkin method in the SDA. This is
proved to be true and the results are found to be very practical
from a comparison with the results by the full SDA and the
experimental results. With this idea, each current is represented
in the form of one equation and the matrix size is 2 X 2. Once the
current expansion functions to be used are fixed, the numerical
procedure in the SDA requires only that the assumed resonant
frequency change until the determinant of the matrix becomes
zero. Thus, the computation time can be reduced by a factor of
20 ~ 50.

Table I shows the calculated results of resonator lengths ob-
tained by the current representation in this new manner in
comparison with those obtained by the conventional current
expression. In each case from (a) to (d) in Table I, the current
coefficients obtained from the case in (a) at 11 GHz were used.
These currents are referred to the standard currents and their
density shapes are shown in Fig. 3. The dominating longitudinal
current is of a perturbed cosine form while the transverse current
exists for the most part near the edges and seems to become
infinite at the edges. From Table I, it is clear that the results
using the new process are in very good agreement with those
calculated by conventional means despite the fact that some
parameters are not necessarily close to the original ones. Thus, it
is illustrated that the numerical computation based on the SDA
in this new manner is very practical.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, the accuracy of computational results obtained
by the SDA is discussed in relation to the experiments. All
computations were done using the new current expression. The
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TABLE 1
COMPARISON OF THE CALCULATED RESULTS OF RESONATOR LENGTHS
BY FULL SDA AND NEW PROCESS

. B-A
L in {mm] A[%] = —7— x100 A : Full SDA
TIGHz] 3 11 13 B : New process
A 6.947 4.889 4.030
B 6.957 4 889 4.033
A %] 014 0 0.07 Standard Parameters
fo=11GHz
(a) Resonator length vs Frequency £r=9.47
w [mm] 0.3 0.575 1.1 w = 0.575
A 5.085 4.889 4.643 L = 2‘8
B 5.091 4.889 4.651 2a=2b=20
A[%] 0.12 0 0.17 (]
(b) Resonator length vs Strip width
€r 2.1 9.47 13
A 9.900 4.889 4.128
B 9.936 4.889 4.130
A %] 0.36 0 0.05
(c) Resonator length vs Relative dielectric constant
t [mm] 0.3 0.6 1.0
A 4942 4.889 4.699
B 4.956 4.889 4.704
A[%] 0.28 0 0.11
(d) Resonator length vs Substrate thickness
dinal 1202 fo=11GHz w=0.575
Longitudinal current Jz(0,z er— t=0.6
104 { r=947 h=10 [mm]
2a=2b=20
Q
=]
g
g
< 0 AA~ -t WA
2 -L/2 0 L/2
B z
é —~
1.04 Transverse current  Jx(0,z)
Fig 3 Standard current forms for new process computation.

experiments were done with a 0.6-mm-thick alumina substrate
whose relative dielectric constant €, as supplied by the manufac-
turer is 9.4. The accuracy of the value, usually measured at a low
frequency such as 1 MHz, is estimated to be +2 percent.

First, in order to find out the propagation constant 8 and the
open edge effect experimentally, the resonant frequencies of the
stripline resonators shown in Fig. 4 were measured. In Fig, 4, the
short stripline resonates in the fundamental mode (half-wave-
length), and the long one resonates in the second harmonic (full
wavelength). It is assumed that the edge effect A/ and the
propagation constant 8 are the same in both resonators when the
lengths L, and I, are chosen so that their resonant frequencies
are almost equal. Since two equations are obtained for two
unknowns, these can be solved. The relations among these pa-
rameters are

n-149.9k 5

oL, +2A! ©)
where n=1,2; k is the relative propagation constant; f, is the
resonant frequency (in GHz): and L, is the strip length (in mm).

To examine the accuracy and the uniqueness of the solutions,
one more resonator in the third harmonic was tested for different
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Fig. 4. Stripline resonators for experimental estimation of propagation
constant.
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Fig. 6. Open end effect versus frequency.

combinations of equations. Fig. 5 shows the results of k and Al
The two curves for k show the numerically computed values by
the SDA. A better agreement of the curve for €, = 9.47 with the
measured value implies that the originally given ¢, value is not
necessarily accurate. The measured data for the edge effect A/ do
not correlate perfectly and indicate only that 2A/ has a value of
about 0.4 mm. It seems that the accuracy of the measured
parameters was not sufficient for A/ estimation.

Next, the resonant frequencies of the stripline resonators were
measured with a stripline length varying from 4.5 to 7 mm in the
X-band. The computations were performed with the standard
structural parameters, an €, value of 9.47, and the standard
currents. The results are that the discrepancy between the mea-
sured and calculated values is less than +0.2 percent. Then, A/
was evaluated from the differences between the resonator length
and the calculated half propagation wavelength at each fre-
quency. Fig. 6 shows the A/ estimations in terms of frequencies.

633
061  x measured point 11,33 ~ 12.26GHz L~4.5mm
E ~— calculation @ 12GHz
Eos,
_‘______J————
- 0.4
P M—’
0.3 ¥
2] w = 0.575
0 £r=947 1=0.6
h=10
0.1 2a=2b=20 [mml
0 v r T r x
0.3 0.5 0.7 0.9 1.1
Stripline width  [mm]

Fig. 7. Open end effect versus stripline width.

The shape of the calculated A/ is also illustrated in Fig. 5 as a
dotted line. Evaluations of A/ in terms of strip widths were also
carried out. Fig. 7 shows these resulls. The measured values in
the figure were estimated using the calculated half wavelength of
the propagation at the resonance frequency of 4.5 mm stripline,
while the calculated values are those at 12 GHz.

Excellent agreement between the computed and measured re-
sults in both propagation constant and resonant frequency with
the same ¢, value implies that the SDA is a practical method for
exact microstrip characterization. All calculated results in Figs. 6
and 7 also show superior agreement with those measured once
the exact €, value is determined. It is therefore suggested that the
¢, value of substrate in a certain frequency band be determined
in such a way that the calculated results with the €, under a good
convergence condition meet the experimental results of the reso-
nance frequencies of stripline resonators.

V. CONCLUSION

Accurate characterization of stripline resonator open end was
obtained by numerical computation based on the spectral-
domain approach with a resonance frequency accuracy of less
than 0.5 percent. The numerical process includes a new current
expression which permits the computation time to be 10 to 50
times less than at present. For the evaluation of computational
results, the way to determine the ¢, value of the substrate at a
certain frequency band was discussed. The results obtained in
this manner are useful in that they create a simple equation of
open edge effects for CAD which includes the frequency depen-
dence.
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